
1For free distribution

 The chapter concerns the following;
² How to analyze a problem and develop an algorithm
² Control structures and their use
²

² Finding alternate solutions to a problem
² Programming in Pascal
² Evolution of programming languages

1.1 Analyzing a problem
The raw materials that are used to solve a problem are known as the 'input'.

The result obtained after solving a problem is known as the 'output'. Converting
input to output is called the 'process'. A process takes place step by step and it is

Example -
 Problem 1 : Preparing a letter which can be posted.
 Input : A sheet of paper suitable to write the letter on and a pen
 An envelope and a stamp

 Glue
 Process : 1. Writing the letter

 2. Folding the letter and putting it into
 the envelope

 3. Pasting the envelope

4. Writing the recipient's address on the
 envelope

 5. Sticking the stamp
 Output : A letter ready to be posted.
 Note: Steps No. 4 and 5 in this process can be interchanged.

indicated.

1 Programming

2 For free distribution

Problem 2 : Making a cup of tea
Input : Tea leaves

 Process : 1. Putting tea leaves in the strainer
2. Pouring hot water to the cup through
 the strainer
3. Adding some sugar to the cup
4. Stirring it well with a spoon

 Nos. 4 and 5
Output : A cup of tea

Problem 3 : Dividing 40 page and 80 page books from a parcel of
 books between two siblings - Sanduni and Anupama.

Input : The parcel of books
Process : 1. Opening the book parcel

2. Taking a book out from the parcel
 Sanduni
 Anupama

 5. Go to Step No. 2 till all the books are taken out of the
 parcel

 Output : Sanduni getting 40 page books
 Anupama getting 80 page books
 Problem 4 : Adding two numbers

Input : Two numbers
Process : Adding the two numbers
Output : Total
Problem 5 : Finding the area of a rectangle
Input : Length and width of the rectangle
Process : Area = Length x Width
Output : Area

3For free distribution

Problem 6 : Finding the larger number between two numbers

 Input : Two numbers
Process :
Output : Larger number

 Problem 7 : Finding whether a number is odd or even
Input : Number
Process : Dividing the number by 2

Deciding that the number is even if
the remainder = 0
Deciding that the number is odd if the remainder = 1

Output : Indicating whether the number is odd or even

Activity

among 20 people.

What are alternative solutions?

called alternative solutions. Such solutions depend on the nature of the problem.

4 For free distribution

Example
Imagine you come to school by school bus. If the bus breaks down on your way to
will think of alternative solutions to reach school.

1. Coming to school by another school bus which goes to your school
2.
3. Walking to school along the road
4. Walking to school using a short-cut
5.

school
6. Reaching the school by car or motor bike with the support of a trustworthy

person
You may select a good solution out of these if it is mandatory to go to school that
day.

consider these and select an appropriate solution.
All the solutions pertaining to a problem are called solution space. In computer

Example 1

Input : Length and width of the rectangle
Process : Calculating the perimeter
Output : Indicating the perimeter

Let us examine the solution space to calculate the perimeter.
1st solution Perimeter = length + width + length + width
2nd solution Perimeter = length × 2 + width × 2

1st solution as the most appropriate. A person who has knowledge of multiplication
and addition can select the 3rd solution out of the 2nd and 3rd solutions as the most
multiplications.

5For free distribution

Example 2

and indicating pass if the score is 35 or above.

Input : Marks
Process : Comparing the mark scored with 35

Solution 1. If the mark is less than 35
Result = Fail
If not
Result = Pass

Solution 2. If the mark is 35 or more than 35
Result = Pass
If not
Result = Fail

Output : Fail or Pass
Example 3
Finding the larger number from between two numbers (See problem 6 in page 3)

Let us consider the two input numbers as n1 and n2.

Solution 1. If n1 is larger than n2, the larger number will be n1.

 If n2 is larger than n1 n2.

Solution 2. Subtract n2 from n1.

 If the result is more than 0, n1 is the larger number.
 If the result is less than 0, n2 is the larger number.

solutions.

6 For free distribution

1.2 Problem Solving using Algorithms
An algorithm is a method to show the steps in solving a problem. An

algorithm is a step-by-step procedure for solving a problem. The need for this is to
present a way to solve the problem with a plan.
Example 1 - Let us develop an algorithm to post a letter.

stamp after writing the address or write the address after sticking the stamp.

the process and the output is same.
Example 2 - Let us consider steps in measuring 500g of sugar using a scale.

ing sugar into a bag

scale

it weighs 500g

from the bag till it weighs 500g

is 500g
The algorithm to measure 500g sugar is given above.

Activity
There are 183 students in a primary school. The principal has
decided to hold an inter-house sports meet dividing them into three
the students into the three houses.

7For free distribution

1.2.1 Control Structures
Three types of control structures are used in an algorithms.

i. Sequence

ii. Selection

iii. Repetition

i. Sequence
If the steps from the beginning to the end of an algorithm are carried out in

Example -
1. Climbing up or down step by step when going on a staircase
2. Students who were admitted to grade 1 of the school
 continue studies till grade 13
Activity

Write down two incidents which consist of sequences.

ii. Selection

8 For free distribution

Examples of selection
1. Admitting a child to Grade 1:
 If a child is below 5 years as at 31st of

 January that year
The child cannot be admitted to school

 If not
 The child can be admitted to school
2. Passing a subject:
 If the mark is 35 or more
 It is a Pass
 If not
 It is a Fail

 If you have money equal to or more than
 the price of the book

 You can buy the book
 If not
 You cannot buy the book
Activity

1. Write down three incidents which consist of selection.
2. If a Sri Lankan citizen gets the right to vote after completing the age

iii. Repetition
If one or several steps of an algorithm are repeated until a condition is

9For free distribution

Examples
1. Let us consider the process of a class teacher

marking the attendance register.

 last name of the register is called
2. Let us consider the process of reading a paragraph

and calculating the number of words you read.

Activity
1.
2. Fill in the blanks below related to repetition that output 5

times from 5 to 60.
I. n = 5
II. Output the value of n.
III. Add 5 to the value of n.
IV. Repeat step number ……… and ……….. till the value

of n = 60.

1.3 Representation of an algorithm
Flow charts and pseudo codes are used as tools to present an algorithm to

make the algorithm understand better.

10 For free distribution

1.3.1 Flowcharts
Flowcharts are used to present how the algorithm is built step by step in a

dramatic manner. The symbols given in table are used to indicate different functions.
Table 1.1

Symbol Function
Start or end

Input or output

Process

 Decision

 Flow direction

Connector

Sequence
 In sequence the steps from the beginning to the end are executed in order.
E.g. 1 - Finding the area of a circle.

Input the radius of the circle
Calculate the area of the circle

Start

End

Output the area of the circle

11For free distribution

Selection

E.g. - Finding whether a number is odd or even

Input the number
Find the remainder when the

number is divided by 2

Is the remainder 0? No An odd number
Yes

An even number

Start

End
Repetition

E.g. - Finding the total of some numbers

Get the number N
Total = 0

Total = Total + N

Are there any more
numbers?

Output the Total
No

Yes

Start

End

12 For free distribution

Activity

1. Find the perimeter and area of a rectangle.
2. It is decided to add Rs.5000 to the basic salary of the employees of

a company. Calculate the new salary.

The standard fare should be paid for letters which are equal to or
less than the standard weight. An additional fare should be charged
if the weight is more than the standard weight.

1.3.2 Pseudo codes
When an algorithm is presented in simple English terms it is called a pseudo

code. Pseudo codes are independent of a computer language. Pseudo codes can be
computer programming easier.
Let us see simple English terms used in an pseudo code.

END - To indicate an end

IF … THEN .. .ELSE … ENDIF - Used to indicate a selection
FOR – DO
WHILE – ENDWHILE } Used to indicate a repetition

 REPEAT - UNTIL
Writing pseudo codes
E.g. 1 - Finding the area of a circle

INPUT Radius
« Radius « Radius

DISPLAY Area
 END.

13For free distribution

E.g. 2 - Finding whether a number is odd or even

READ number as N
CALCULATE Remainder after number is divided by 2
IF Remainder = 0 THEN

DISPLAY “Even number”
ELSE

DISPLAY “Odd number”
ENDIF

 END.
E.g. 3 - Finding the total of some numbers

Total = 0
REPEAT

READ Number as N
CALCULATE Total = Total + N

UNTIL numbers are over
DISPLAY Total

END.
E.g. 4 - Finding the total and the average of 10 numbers

Total = 0
Average = 0
n = 1
WHILE n <= 10

READ Number
CALCULATE Total = Total + Number
n = n + 1

ENDWHILE

END.

14 For free distribution

Following are some of the facts about the above pseudo code.
² Total, Average and Number are variables.

° When values are assigned to number variable, the value of Total, Average
and n variables change.

² n indicates the number of repetitions. (Number of times the loop is executed)
² The statements Total = 0 and Average = 0, makes starting values of these

variables assigned as 0.
° Hence, the initial value of Total and Average are 0s.

² The statement n = 1, makes the starting value of n is assigned to 1.
²

² WHILE n <= 10 indicates that the loop n should be repeated until value of n is
10.

° Repetition occurs when the value of n is 10 or less than 10. This means,
till the condition n <=10 is true, repetition occurs. When the value of n
becomes 11, the repetition stops. Then the condition becomes false.

² READ denotes getting a value for Number variable.
² Total = Total + Number denotes the

present value of Total is added to
number and the resultant value is
assigned on the new value of Total.

² n = n + 1 calculates the number of
repetitions. 1 is added to the present
value of n and the result is assigned
to n.

² ENDWHILE indicates the limit to
end repetition. Hence, only READ
number, Total = Total + Number and n = n + 1 are repeated till the condition n

² When the repetition stops, the value of n is 11 and the condition is false.
²

value is assigned to Average variable.
² DISPLAY (Total, Average) produces the output of the total of 10 numbers and

its average.

15For free distribution

Observation
²

lost.
²

value assigned to the Number variable is added with the value
assigned to Total variable and the result obtained is assigned
to the Total variable.

² Total = Total + Number is not a mathematical formula.

Start

Stir tea

Add sugar

Water boiled?

Want sugar?

No

No

Yes

Yes

Pour water in Cup

Put tea bag in cup

End

 Put tea bag in cup

 ENDWHILE
 Pour water in cup

Add sugar
Stir tea

 ENDWHILE
END

16 For free distribution

E.g. 1 - Finding the larger number from two different numbers

Input the two numbers

Is N1 larger than
N2? No

Yes

Output the larger
number

Larger number is N1

Start

End

Larger number is
N2

READ
IF N1 > N2 THEN

 Large = N1
ELSE

 Large = N2
ENDIF
DISPLAY Large

 End.

E.g. 2 - Finding the smallest number from 10 numbers

No

Yes

Input the number N

Output Min Count < 10 ?

No
Yes

Output the number N

Min = N
Count =1

N < Min ?

 Min = N

Count = Count + 1

Start

End

17For free distribution

INPUT Number as N
Min = N
Count = 1
WHILE Count < 10

OUTPUT Number as N
IF N < Min Then

Min = N
ENDIF
Count = Count + 1

ENDWHILE
PRINT Min

END.
1.4 Pascal programming

Var year : integer;

data type

reserved word
² Reserved words in Pascal cannot

In any programming language
reserved words cannot be used as

E.g.
E.g.

² Should start with an English letter.
²

E.g.
² E.g.
² There should not be any space between words.

E.g. - Student Name - Not valid

18 For free distribution

² The special characters such as the following should not be included in an

²

Last-name

1.4.2 Reserved words

Reserved words are different from language to language. The following are
reserved words used in Pascal.

exports

for
function
goto
if
implementation
in
inherited
inline
interface
label
library

mod
nil
not
object
of
or
packed
procedure
program
record
repeat
set
shl

shr
string
then
to
type
unit
until
uses
var
while
with
xor
ate
to

and
asm
array
begin
case
const
constructor
destructor
div
do
downto
else
end

19For free distribution

1.4.3 Standard data types in Pascal

The following are data types and their ranges.
Integer - Plus or minus whole numbers

 E.g.
Real - Plus or minus decimal numbers

 E.g.
Boolean

 True or False
Char - Any character of the key
 board

 E.g.
String - Any sequence of characters

 E.g.

Important

1.4.4 Variables and constants
Variable

program is being executed.

20 For free distribution

 “var” is used to declare variables.
Retrive Store

E.g. - var count : integer;

Avg : real ;
Pass : boolean;
Character : char;

Important
A variable has a name value of the declared type.

Constants

Example
Const max = 100;

Observation
²

1.5 Operators

21For free distribution

Basic types of operators
 1. Algebra operators

 Operator Usage Example expression Result
 + Addition 6 + 3 9

- Subtraction 7 - 5 2
* Multiplication 2 * 5 10
/ Division 10/4 2.50
DIV Division of round numbers 20 DIV 6 3
MOD Remainder after division 20 MOD 6 2

3
6 20

18
2

DIV

MOD

2. Comparison operator

result of an expression which consists of a comparison always takes a Boolean
value. Hence expression will be True or False.
 Function Usage Example expression Result

> Greater than 7 > 3 True
 >= Greater than or equal 8 >= 8 True
 < Less than 3 < 2 False
 <= Less than or equal 4 <= 6 True
 = Equal 3 = 1 False
 < > Not equal 2 < > 5 True

3. Logical operators
Logical operators are used to combine two or more expressions. For further

study on this refer basic logic gates that you learnt in Grade 10.

22 For free distribution

i) AND operator

of AND.
First Expression Second Expression (First Expression) AND (Second

Expression)
False False False
False True False
True False False
True True True

Example
1.
2.
3.

Important
evaluates to false.

evaluates to true.

ii) OR operator

result of OR is True or False. The following table shows the function of the OR
operator.

First expression Second expression (First expression) OR (Second
expression)

False False False
False True True
True False True
True True True

23For free distribution

Example
1.
2.

Important
OR operator evaluates to true.

evaluates to false.

iii) NOT operator
A True expression is always evaluated as false with a NOT operator while a

false expression is always evaluated as true.
Expression NOT (Expression)

False True
True False

Example
1.
2.

indicated as false

Operator precedence

below.
Priority order Operator

1 NOT
2

3 + - OR
4 = < > < <= > >= less

high

24 For free distribution

Evaluating expressions
E.g. 1 E.g. 2 E.g. -3
5 + 2 3 + 3 4 * 2
7 6 8
E.g. 4 E.g. -5

true true
Let us identify the basic components of a normal Pascal program.

program addNum
var } Declaring the variables avg: real;

total: =num1 + num 2; }Expressions which indicate
the process

Output
Input

Indicating
comments

End. Ending of the main program

²

²

²

25For free distribution

²

'Welcome Pascal Programming'.

variable in a new line.
When writing Pascal statements;

=
num 1
3.4

num 2
2.3

Total
5.7 +

²

statement. Semi-colon indicates the end of
an statement.

² What happens with the expression
total :} num1 + num2 is that it adds the
variables num1 and num2 and assign result
to the variable 'total'

² “:}

i: integer
i := 4;

1.6 Selection
IF statement

If condition structure is as follows.

Is the condition
True?

No

Yes

Pseudo Code

IF Condition THEN

ENDIF

Flow chart

26 For free distribution

There are two types of IF statements.

E.g. 1 - If the input number is

Var N : integer;

 If N > 0 then
End.

Is N > 0? No
Yes

Print N

End

Start

Pseudo Code

 Input N
 IF N > 0
THEN
 Print N
 ENDIF
End.

Flow chart

Pascal Code

executed. The If condition structure is as follows.

Is the condition
True?

No

Yes
Statement 1

Statement 2

IF Condition THEN
 Statement1
ELSE Statement2
ENDIF

Pseudo CodeFlow chart

27For free distribution

E.g. 2 - Finding the larger number from two unequal numbers.

 If N1 > N2 then
Large :} N1

 Else
Large :} N2;

End.
Pascal program

Nested IF

 Use of Nested IF when there are multiple conditions for a single variable
E.g. 3 - Finding the Grade when the marks scored by a student for a subject is given
 as input.

Is M >= 75?
No No No No

Yes Yes Yes Yes
Is M >= 65? Is M >= 50? Is M >= 35?

Result = ''A'' Result = ''C'' Result = ''S''

Result = ''F''
Output result

Start

End
Flow chart

28 For free distribution

 Input Marks as M IF M >= 75 Then A ELSE IF M >= 65 then Grade = ELSE IF M >= 50 then Grade = C ELSE IF M >= 35 thenGrade = SELSEGrade = F ENDIFENDIF ENDIF ENDIF Display GradeEnd.

Var M: integer; Grade: char;

 If M >= 75 then Grade :} Else If M >= 65 then Grade :} Else If M >= 50 thenGrade :} ElseIf M >= 35 then Grade :} SElse Grade :}Grade =
End.

Pseudo Code Pascal Code

Using CASE statement when a variable has multiple conditions

it is easier to use CASE statement.

Flow chart

Marks

0-34 50-64 65-74 75-100
Result = ''W'' Result = ''C'' Result Result = ''A''

Output grade

Result = ''W''
35-49 other

Indicate marks as invalid

Start

end

29For free distribution

var Marks : integer; Grade: char;

 Case Marks of 0..34 : Grade :} 35..49 : Grade :} 50..64 : Grade :} 65..74 : Grade :} 75..100 : Grade :} Else
 End;

End.
 Pascal program

1.7 Repetition
Let us examine how repetition structures are used when the number of

repetitions is known in advance.

i) FOR – DO structure (1st Method)
FOR Variable :}
²

²

²

²

known in advance.
Repetition structure Starting

value
Ending
value

Number of repetitions

FOR X :}1 TO 5 DO 1 5 5
FOR X :} 0 TO 4 DO 0 4 5
FOR X :} 5 TO 10 DO 5 10 6

30 For free distribution

E.g. - Printing the values from 1 to 10

Var count : integer;
For count :} 1 to 10 do

End.
Here the count variable value is changed from 1 to 10 while printing the

ii) FOR – DO Loop (Method 2)
FOR Variable :}
²

²

Repetition structure Starting value Ending value Number of
repetitions

FOR X :} 10 DOWNTO 5
DO

10 5 6

FOR X :} 4 DOWNTO 0 DO 4 0 5
E.g. - Printing of values from 10 to 1

Var count : integer;
 For count :} 10 downto 1 do
End.

Count variable value is changed from 10 to 1 while printing the output and
and the loop in executed 10 times.

31For free distribution

Finding the total and average of ten numbers

A block of statments in
repetition.

 avg: real;
 total :} 0;
 for I :} 1 to 10 do
 begin

total :} total+num;
 end;

avg :}

 end.

}
Important

A block of statements indent properly is written between 'begin' and
'end'; inside the FOR loop.

''repeat until'' structures are used.

i) WHILE DO Loop
² Conditions are checked at the beginning of the loop.
²

condition is true.
² Statements inside the loop never executed if the condition is false.
² The condition becomes false at the end of the repetition.
²

E.g. 1 - while number > 0 do
 Repetition is executed if only the value of the variable number is positive.

E.g. 2 - number :} 1;
 while number <= 10 do

number :} number + 1;

32 For free distribution

 Condition is true since the starting value of the variable 'number' is 1.

 Loop stops when the value of the ''number'' variable is 11.
ii) REPEAT UNTIL Structure

² Condition is not checked at the beginning of loop.
²

² Loop is started if the condition is false only.
² Loop stops when the condition becomes true.
²

E.g. 1 -
 count = 0;
 Repeat

writeln ^ &;
count :} count + 1

 Until count > 5;
 The starting value of count variable is 0.
 The word Pascal is displayed on the screen.
 1 is added to the count variable.
 It is checked whether the value of 'count' variable is larger than 5.
 Loop is executed till the value of the 'count' variable becomes 5.
 Loop stops when the value of count is 6.

E.g. 2 -
 sum :} 0;
 repeat

sum :} sum + 5;
 until sum < 50;

33For free distribution

² The starting value of sum variable is 0.
² 5 is added to the value of sum.
² The value of sum is 5 and it is displayed on the screen.
² It is checked whether the value of sum variable is less than 50.
²

²

E.g. 3 -
 sum :} 0;
 repeat

sum :} sum + 5;
 writeln^sum&;
 until sum >= 50;
² The starting value of sum variable is 0.
² 5 is added to the value of sum.
² The value of sum is displayed on the screen.
² It is checked whether the value of sum variable is greater than or equal to 50.
²

²

² Loop is executed 10 times.
² Multiples of 5 from 5 to 50 will be given as output.

1.8 Nested control structures

a selection may be included inside another selection. Hence nested controlling
structures should be used in programming.

1.8.1 Repetition inside selection
A repetition may be executed depending on a condition of a selection being

E.g. -
 sequence can be produced as output.

34 For free distribution

var num:integer;
 cho:char;
begin

 if cho = 'A' then
 begin
 for num :} 1 to 6 do
 end;
 if cho = 'D' then
 begin
 for num :} 6 downto 1 do
 end;
end.

1.8.2 Selection in repetition
Let us consider how selection takes place while the repetition control structure

being executed.
E.g. - Determining whether the numbers input by the user are odd or even and

begin
 for count :} 1 to 10 do
 begin

 rem :} num mod 2;
 if rem = 0 then
 begin
 :}
 end

35For free distribution

 else
 begin

:}
 end;
 end;

end.

 1.9 Arreys

It is essential in programming to use variables to store data items in
are different in names are needed to store data items which belong to the same data
type.
E.g. -

: real;

1.9.1 Use of arrays
An array is used to save data items of the same type in memory using a

to each item.

Each cart holds a

single piece of dataHere comes the data
train

36 For free distribution

This is a data structure used to save data of the same type sequentially. An
array uses a group of adjoining memory spaces. A one dimensional array can be as
follows.

Var Name_of_Array (data type
E.g. - var marks (''

²

numbers.

1.9.3 Attributes of an array
²

²

square brackets.

First element
lowest index Last element

highest index

Array Name Index

element 1 element 5

37For free distribution

E.g. - the size of the array Var M : Array[0..4] of integer; is 5.
From M[0] to M[4], it consists of 5 elements.
Index is indicated in square brackets.

E.g. - ; Var X : Array[1..5] of integer;
Only data items which belong to the same type can be stored in the array.

Any element of the array can be accessed randomly. Hence, an array can be
accessed easily through a repetition control structure.
E.g. - Entering Maths marks of 40 students into an array
var maths : array[0..39] of integer;

i,marks : integer;
for i :} 0 to 39 do

begin
writeln(‘Enter marks’);
read(marks);
maths[i] :} marks;

end;
1.9.4 Assigning values to an array

num[0] num[1] num[2] num[3] num[4]

45 36 60

45 75 36 81 60

var num : array[0..4] of integer;
 num[0] :} 45;
 num[2] :} 36,num[4] :} 60;
 num[1] :} num[4] + 15;
 num[3] :} num[0] + num[2]

38 For free distribution

1.9.5 Declaring values of an array
The elements declare the values of an array.
writeln ^num[3]&; Print the 4th element (81)
writeln ^num[1]" num[4]&; Declaring 2nd and 5th elements (36, 60)
for x :} 0 to 3 do

36, 81)
writeln ^num[x]&;
for x :} 2 to 4 do Print the 3 elements - 3rd, 4th, 5th - of the array

 (36, 81, 60)
writeln ^num[x]&;
for x :} 0 to 4 do

 81, 60)
E.g. - Entering Information and Communication Technology marks of 35 students,
 determining the highest mark and calculating the average.
program ictMarks(input,output);
var marks : array[0..34] of integer;
 i,tot,max : integer;
 avg : real;
begin
 for i :} 0 to 34 do
 begin
 writeln('Enter Marks');
 read(marks[i]);(* Read Marks to array *)
 tot :} tot + marks[i];(* Add marks *)
 end;
 avg :} tot/35;
 max :} marks[0];
 for i :} 1 to 34 do
 if marks[i] > max then max :} marks[i];
 writeln('Maximum marks = ', max);
 writeln('Average marks = ',avg);
end.

1.10 Use of sub-programs
As a program becomes complex, when the number of sub processes increase,

programs as much as possible while writing is useful.

39For free distribution

sub
problem 1

sub
problem 2

sub
problem n

Main
problem

sub program 1

sub program 2

sub program n

1.10.1 Types of sub program
There are two types of sub programs in addition to the main program. A

sub program which returns an output back to the main program and a sub program
which does not return an output back to the main program. A sub program which
returns an output back is called a Function and a sub program which does not give
an output is called a Procedure.

1.10.2 Introducing sub programs

PROGRAM
CONST

VAR Function and
procedure
declaration

Mainprogram

BEGIN

END

40 For free distribution

E.g. -

E.g. -

Return Output

Calling the procedure
Calling the function

begin
 statement
 ………………
end;

real ;
 begin

statement
………….

 end;
begin
 statement
 ………………
 ………………
 ………………
 statement
end.

Procedure declaration

Function declaration

Main Program

E.g. - Let us consider the program to calculate the area and circumference of a
 circle.

41For free distribution

1. A program built with procedures

var radius:real;

 begin

 end;
 var area:real;
 begin
 area :} pie * radius * radius;
 end;
 var circum:real;
 begin
 circum :} 2 * pie * radius;
 end;
begin

end.

2. A program with functions

var radius:real;

 var area:real;
 begin
 area :} pi * radius * radius;

42 For free distribution

 processArea :} area;
 end;
 var circum:real;
 begin
 circum :} 2 * pi * radius;
 processCircumference :} circum;
 end;
begin

end.

1.11 Evolution of programming languages
1.11.1 Need of a programming language

Hello Mr.
Computer? '1010101010101010'

A program is a sequence of
instructions which performs a certain task
using the computer. A computer language is
needed to provide the instructions.

43For free distribution

1.11.2 Low level programming languages
Machine language

processor could directly run a program written in machine language.
A program written in machine language has the following features;

² Executed directly on the machine
² Fast in operation
² No need of language translating programs
²

²

Assembly language

language is designed using simple symbols.
A program written in assembly language has the following features;

² Operation is comparatively slower than machine language.
² Assembly language should be translated to instructions using the language

translating program called assembler.
²

² The use of symbols makes it more simple to understand.

A program written in
Assembly language

 Machine language
instructionsAssembler

1.11.3 High-level programming languages
Languages which are designed with simple English words enabling the

programmer to understand it easily are called high-level computer languages.

44 For free distribution

Examples for high level computer languages

FORTRAN PascalC
High-Level Language

Assembly language
Machine language

Hardware

A program written in a high-level
language has the following features;

² Easy to understand.
² High level languages should be

translated to instructions before
executing on a computer.

² Do not depend on the machine.

1.11.4 Programming language types
Programming is a creative task where a computer programmer to provide

instructions to the computer on how to perform a particular task done. A program

There are many different approaches to computer programming. These are
called programming paradigms. Different approaches develop solutions to problems
using programs using different paradigms. Even though most of the programming
to different paradigms.

Paradigms

 Declarative Imperative

Logic
Functional

Database Procedural
Object

Oriented
Parallel

Processing

 Programming Paradigms

45For free distribution

Algorithmic
Declarative Object-

OrientedFunctional Programming Logic Programming
Algol
Cobol
Ada
C

Modula - 3

Lisp
Haskell

ML
Miranda

APL

Prolog Smalltalk
Simula

C++
Java

 There are a number of programming. The differences among different
programming language types.

Difference between procedural and declarative paradigms
A procedural language is a computer programming language which consists

of a well structured set of steps and procedures. This includes statements for problem
solving steps.
Example -

Data is
exchanged
between

procedures

Declarative Procedure

Procedural Programming

Procedure 1

Procedure 2

Procedure 3

Declarative Procedure

Code

Data

46 For free distribution

The Pascal programming has procedural paradigm features.
A declarative paradigm develops a structure and elements of computer

to solve problems explaining what you want rather than stating how to solve the
problem as in primary programming languages. The program itself does not explain
how it is executed. This means the computer is provided only what the problem and
to the given problem. This is completely different from procedural paradigms which
Intelligence.

Important
Procedural Paradigm

Saying how you achieve it

A
B
C

1. Keep block A
 of block A
3. Keep block C on top

 Declarative Paradigm
Saying what you want

A
B
C A pillar which

consists of 3
blocks

Comparison of structured and object oriented paradigms
A structured program is a logic based paradigm and it is the pre discussed

object oriented program. A structured programming paradigm provides facilities to
understand and modify the program. The system is divided into sub systems and

Informs the user to enter data

Retrieves data entered by the user

User is given the output

Data is processed

Structured Program

47For free distribution

The Pascal programming has the structure of structured programming as
well.

 Object

Property Method

Object oriented programming is a
programming paradigm based on the concept
of objects. Objects consists of data and
methods. Methods are codes that are in the
form of procedures that handle data. These
are called Attributes. Class is the basic structure of object oriented programming.
Class describes the behaviours of data and instances. Class can create objects of
same type.

An object-oriented program consists of many objects and
interacting with each other by sending messages

System

Record loans Add
resources

Structured Approach
Decompose by functions or processes

Library Information Systems

Catalog Librarian
Library

 Object Approach
Decompose by objects or concepts

48 For free distribution

Property
(Data)
Color
Eye Color
Height
Length
Weight

Methods
(Code)
Sitting
Laying
Shaking
walking

Property Values
Color - Gray,
White and Black
Eye Color - Blue
and Brown
Height - 18 Inches
Length - 36 Inches
Weight - 30
Pounds

Methods
Sitting
Lying
Shaking
Walking

TommyDog

Class Object

Create Instance

Procedural Languages Computation involves
code operating on Data

Code (Methods)
Data (Property)

Object-Oriented Languages An object encapsulates
both code and data

Code (Methods)
Data (Property)

Computation involves
objects interacting with
each other

49For free distribution

Activity

Programming and scripting

These should often be compiled. Programming languages need to be compiled.

Activity
Compare the differences between the programming paradigms given
below.

Procedural vs Declarative
Structured vs Object oriented
Programming vs Scripting

1.11.5 Language translators
Programs written in any computer language except in machine language

execution.
A program written in Assembly language is translated to machine language

instructions using a language translator called Assembler.
Two language translators are used to translate a program written in

high-level language to machine language instructions.
1. Interpreter
2. Compiler

50 For free distribution

Interpreter
This is the language translator which translates each statement written in a

high-level computer language to machine language commands one by one and the
translated program is executed using the necessary commands instantly.

1.
2.

Important
An interpreter translates code each time the program is executed.

A program written in
high level language

Machine language
instructionsInterpreter

Compiler

Compiler translates the entire program written in a high level language to

A program written in
high level language

Machine language
instructionsCompiler

When translating source code to machine code in computer languages which
use compilers.

These errors are highlighted.

Important
execute any number of times. A translation is needed again only if
the source code is changed.

51For free distribution

²

²

²

²

²

²

²

²

²

Summary

52 For free distribution

² Evaluation of an expression occurs depending on the priority level of
functions.

² Machine language and Assembly language are considered low–level
programming languages.

²

programming languages.
² A program written using Machine language can be directly run in the

processor.
² A program written in any computer language except in Machine language

should be translated to Machine language instructions before it runs.
² Interpreter and Compiler are two translation programs.

